Question	Working	Answer	Mark	AO	Notes
1	80÷(7-2)(=16)	£48	Р	3.1d	P1 for a strategy to start to solve problem,
	'16' × 3				e.g. $80 \div (7-2)$ (=16)
			Р	3.1d	P1 for full process to solve problem,
					e.g. '16' × 3
			А	1.3b	A1 cao
2 (a)		84 to 85	Р	2.3a	P1 for interpreting the data and deciding to draw a
					graph or a table to represent the data
			Р	2.3b	P1 for a correct process to label axes or communicate
			D	2.1.1	the data connections
			Р	3.1d	P1 drawing in an appropriate line of best fit or model
			٨	1.21	the problem as a linear function in time
			A	1.3b	A1 for correctly reading off the value at 2030 in the range 84 to 85 or using their linear function correctly
					to give an answer in this range
					to give an answer in this range
(b)			С	3.4b	C1 for a valid comment eg cannot assume a linear
					relationship
			С	3.4b	C1 for a valid comment eg that one cannot predict
					accurately with a date so far away from the original
					data
3 (i)		$2^3 \times 3 \times 5_2$	В	1.3a	B1 cao
(ii)		$2^4 \times 3^3 \times 5^2$	В	1.3a	B1 cao
4		locus	C	2.3b	C1 for method of showing a rotation about one fixed
		(see diagram at			point, e.g. quarter circle with radius PC centre C or
		end)		0.01	radius PB centre B or PA centre A
		,	C	2.3b	C1 for understanding it is a continuous process, e.g.

Higher tier Paper 1 – Non-calculator

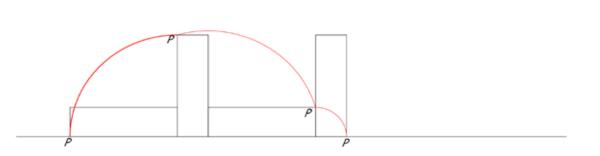
Questi	ion	Working	Answer	Mark	AO	Notes
						quarter circle with radius PC centre C and radius PB
						centre B and radius PA centre A
				C	2.3b	C1 for fully correct drawing
5 ((a)	3x + 5y = 4	x = 3, y = -1	М	1.3b	M1 for correct method to eliminate one variable
		10x - 5y = 35		М	1.3b	M1 for correct method to find second variable
		13x = 39		А	1.3b	A1 for $x = 3$ and $y = -1$
5 ((b)	x + 5 > 8	x = 4	В	1.3b	B1 for $x > 3$ or for $x < 5$
		x > 3		В	1.3b	B1 for $x > 3$ and for $x < 5$
		2x - 3 < 7		В	1.3b	B1 for $x = 4$ from $x > 3$ and $x < 5$
		2x < 10				
		x < 5				
6 ((a) (i)	$4 \times 3 \times 2000^2$	48 000 000 km ²	М	1.3a	M1 for use of $4\pi r^2$ with either π
						or <i>r</i> rounded to 1 significant figure
				A	1.3a	A1 accept 50 000 000 km ²
	(ii)			C	3.4a	C1 for appropriate evaluation of method, e.g. 3 and
						2000 both less than true values
6 ((b)	$9.75 \times 10^7 \times 1000 \div (3 \times 10^8)$	325 s	M	1.3b	M1 for use of distance ÷ time
				M	1.3b	M1 for consistent units
				A	1.3b	A1 cao
7		Shaded area in B	$\frac{19}{40}$	Р	3.1b	P1 for strategy to start to solve problem, e.g. $1 - \frac{3}{2}$
		. 2 1 3 1	40			5
		$= 1 - \frac{2}{5} - \frac{1}{8} \text{ or } \frac{3}{5} - \frac{1}{8}$		Р	3.1b	or $1 - \frac{7}{8}$ or correct equation, e.g. $x + \frac{1}{8} = \frac{3}{5}$
						P1 for setting up a calculation that will lead to the
						correct answer, e.g. $1 - \frac{2}{5} - \frac{1}{8}$ or $\frac{3}{5} - \frac{1}{8}$ or $\frac{7}{8} - \frac{2}{5}$
				А	1.3b	A1 cao

Question	Working	Answer	Mark	AO	Notes
8	4.5 5 22.5	18.75 (%)	Р	3.1d	P1 for process to find amount of amount of land for
	$\frac{15}{15} \times \frac{1}{8} = \frac{120}{120}$ $\frac{22.5}{120} \times 100$		Р	3.1d	wheat, e.g. $\frac{4.5}{15} \times \frac{5}{8}$ P1 for complete process, e.g. $\frac{22.5}{100} \times 100$
			А	1.3b	e.g. $\frac{22.5}{120} \times 100$ A1 18.75 oe
9		84°	Р	3.1b	P1 for process to find size of interior angle of hexagon or pentagon
			Р	3.1b	P1 for establishing a correct process to find angle JAF , e.g. $JAF = (180 - 108) \div 2$
			Р	3.1b	P1 for a complete process to find angle <i>BAJ</i>
			А	1.3b	A1 cao

Question	Working	Answer	Mark	AO	Notes
10	<u>Method 1</u> 2200 - 1700 = 500 30000 - 0000 = 10000 For every £100 increase in wage the increase in sales = £2000 1850 - 1700 = 150 Difference in sales = 1.5×2000 = 3000 20000 + 3000 <u>Method 2</u> Use $y = mx + c$ 1700 = 20000m + c 2200 = 30000m + c $m = \frac{2200 - 1700}{30000 - 20000}$ = 0.05 $c = 2200 - 30000 \times 0.05 = 700$ When $y = 1850$, $x = \frac{1850 - 700}{0.05}$ <u>Method 3</u> Draw a graph	23000	P P A	2.3a 3.1d 3.1d 1.3b	P1 for process to interpret information, e.g. $2200 - 1700 = 500$ oe or use $y = mx + c$ or start to draw graph P1 for process to build on initial strategy, e.g. $2200 - 1700 = 500$ and $30000 - 20000 = 10000$ oe use proportional increase or process to find <i>m</i> and <i>c</i> P1 for strategy to use found information, e.g. $1000 \div 5$ or use values of <i>m</i> and <i>c</i> or use straight line graph A1 cao

Q	lestion	Working	Answer	Mark	AO	Notes
11	(a)		В	В	1.1	B1 cao
11	(b)(i)		$\frac{1}{4}$ of original force	Р	3.1c	P1 for $F = \frac{k}{d^2}$ and $F = \frac{k}{(2d)^2}$ (<i>d</i> may be numerical) or 'Force gets smaller'
				Р	3.3	P1 for full interpretation of results rather than a specific distance, e.g. $\frac{1}{4}$ of original force
	(b)(ii)	$40 = \frac{k}{3^2} \ (k = 360)$	3.6 N	М	1.3b	M1 for $40 = \frac{k}{3^2}$
		$360 \div 10^2$		М	1.3b	M1 for complete method, e.g. $360 \div 10^2$
				Α	1.3b	A1 cao
12	(a)	$g(1-5\times1) = 1 + 5\times(-4)$ or $1 + 5f(1) = 1 + 5\times(-4)$	Shown with working	P P	2.2 2.2	P1 for process to begin expansion, e.g. $(1 - 5 \times 1)$ or 1 + 5f(1) P1 for full process to stated expression
12	(b)	$f^{1}(x) = \frac{1-x}{5}$ $f^{1}(x) = \frac{1-x}{5}$ $f^{1}(x) + g^{-1}(x) = \frac{1-x}{5} + \frac{x-1}{5}$	Proof	Р	2.4b	P1 for start to proof, e.g f ⁻¹ (x) = $\frac{1-x}{5}$ or g ⁻¹ (x) = $\frac{x-1}{5}$
		$=\frac{1-x+x-1}{5}=0$		Р	2.4b	P1 For continuation of proof, e.g. $g f^{-1}(x) = \frac{1-x}{5}$ and $g^{-1}(x) = \frac{x-1}{5}$
				Р	2.4b	P1 for a complete proof with all steps shown

123


Question	Working	Answer	Mark	AO	Notes
13	$0.5(u+2u) \times 12 + 2u \times 10$	Show	Р	2.3a	P1 for process to interpret information, e.g. draw graph
			Р	2.2	P1 for process to identify a strategy, e.g. statement that distance is area under graph or one correct area
			Р	2.2	P1 for process to find complete area, e.g. $0.5(u + 2u) \times 12 + 2u \times 10$
			Р	2.2	P1 for all steps given leading to result 38 <i>u</i>
14 (a)	$\frac{4}{-\times}$	16	Р	3.1c	P1 for process to calculate probability of RR, e.g.
	$\frac{1}{6} \times \frac{1}{6}$	$\frac{13}{36}$	А	1.3a	$\frac{4}{6} \times \frac{4}{6}$ or sample space with all elements correctly
					identified A1 oe
					Al de
14 (b)	$3 \times \frac{2}{6} \times \frac{2}{6} \times \frac{4}{6}$	$\frac{48}{216}$	Р	3.1d	P1 for process to calculate probability of RRL in any one order, e.g $\frac{2}{6} \times \frac{2}{6} \times \frac{4}{6}$
			Р	3.1d	6 6 6 P1 for process to calculate correct probability, e.g.
				5.14	$3 \times \frac{2}{6} \times \frac{2}{6} \times \frac{4}{6}$
			А	1.3b	A1 oe
14 (c)		Yes + reason	C	2.4a	C1 Yes because an even number of $+1s$ and $-1s$ cannot give the answers $+3$ or -3

Question	Working	Answer	Mark	AO	Notes
15	$\angle DOC = 46^{\circ}$	10 [°]	Р	2.2	P1 $\angle DOC = 2 \times 23^{\circ}$ (angle at centre is twice angle
	$\angle OCD = (180^{\circ} - 46^{\circ})/2$		D	2.2	at circumference)
	$\angle ADC = 100^{\circ}$		Р	2.2	P1 $\angle OCD = (180^\circ - '46'^\circ)/2$ (base angles of isosceles
	$ ightarrow DCA = 57^{\circ}$				triangle <i>OCD</i>) and $\angle ABC = 180^{\circ} - 100^{\circ}$ (angles on a straight line sum to 180°)
	$ ightarrow OCA = 67^{\circ} - 57^{\circ}$		Р	2.2	P1 $\angle ADC = 100^{\circ}$ (opposite angles of a cyclic
					quadrilateral sum to 180°)
					P1 $\angle DCA = 180^{\circ} - '100'^{\circ} - 23^{\circ}$ (angle sum of a
			Р	2.2	triangle is 180°)
			С	1.1	C1 for complete chain of reasoning to find angle
			C	1.1	OCA seen with 10° and at least 1 circle theorem
					quoted
			С	1.1	C1 dependent on all previous marks for full reasons
					at each stage

Question	Working	Answer	Mark	AO	Notes
16 (i)	У 1		М	1.3b	M1 for $(x - 2.5)^2 - (2.5)^2 + 10$ or attempt to find points to plot – must have at least 3 correct points evaluated
			A	1.3b	A1 for $(x - 2.5)^2 + 3.75$ or parabola with minimum marked at (2.5, 3.75)
			C	2.3b	C1 for parabola drawn with minimum in 1st quadrant or y intercept at (0, 10)
			C	2.3b	C1 for parabola drawn with minimum in 1st quadrant at $(2.5, 3.75)$ and y intercept at $(0, 10)$
(ii)	U X	Explanation	C	2.4a	C1 for a start to explanation, e.g. $f(x + 2) - 3$ is a translation of $\begin{pmatrix} -2 \\ -3 \end{pmatrix}$ or attempt to draw graph of f(x + 2) - 3 or Graph of $y = f(x + 2)$ and $y = 3$ drawn or $(x + 2)^2 - 5(x + 2) + 10 - 3 = 0$ $(x^2 - x + 1 = 0)$
			C	2.4a	C1 for a convincing explanation, e.g. new minimum at (0.5, 0.75) so graph will not cross x axis or no interception between $y = f(x + 2)$ and $y = 3$ or demonstration that $x^2 - x + 1 = 0$ has no real roots

Question	Working	Answer	Mark	AO	Notes
17	$(2x-1)^2 = (x+1)^2 + (x-1)^2 - 2(x + 1)(x-1)\cos 120^\circ$ + 1)(x - 1) cos120° 4x ² - 4x + 1 = x ² + 2x + 1 + x ² - 2x + 1 - 2(x ² - 1) × (-0.5)	$\frac{15}{4}$	В	1.1	B1 for correct statement of cosine rule or $\frac{1}{2}ab\sin C$ or value of cos 120° or value of sin120°
	$x^{2}-4x = 0$ x = 4 Area = 0.5 × 3 × 5 × sin120°		Р	3.2	P1 for strategy to start to solve problem, e.g. $(2x-1)^2 = (x+1)^2 + (x-1)^2 - 2(x+1)(x-1)\cos 120^\circ$
			Р	3.2	P1 for strategy to reduce to a quadratic equation, e.g. $x^2 - 4x = 0$
			M P	1.3b 3.2	M1 for method to solve quadratic equation
			Р	3.2	P1 for attempt to use 0.5 <i>ab</i> sin <i>C</i> with numeric or algebraic values substituted
			А	1.3b	P1 for process to equate to $k\sqrt{3}$
					A1 for $k = \frac{15}{4}$ oe

